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Designing Thruster Systems
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A new performance measure for thruster systems called the minimum control authority is defined. It is one of
the most important performance measures since it corresponds to the worst case output of the thruster system,
Various thruster system designs can easily be evaluated based on this performance measure. Several techniques
are derived to calculate the minimum control authority as a function of the thruster configuration, the way in
which the thrusters are controlled, and the physical mechanism that limits the thrusters’ outputs. A technique to
generate a plot of the worst case moment vs force-generating capability of a thruster system is also derived. This
so-called minimum control authority plot can be used to evaluate the worst case output of various thruster system
designs against each other and against the worst case disturbance forces they have to overcome. To illustrate the
concept and demonstrate its usefulness, the minimum control authority plot is applied to evaluate various thruster
system designs for the Gravity Probe B (GP-B) spacecraft. The baseline thruster for GP-B was selected based
on the minimum control authority plot. Although the focus of this article is on thruster systems, the techniques
developed are applicable in general to any system of actuators of any type, for example, the primary flight control

effectors of highly maneuverable aircraft.

I. Introduction

HE designer of a thruster system for the attitude and translation

control of a spacecraft is faced with many options: how should
the thrusters be distributed on the spacecraft, which way should they
point, what type of thrusters should be used, how big should they
be, what is the best way to control them, and taking redundancy into
account, what is the optimum number of thrusters? Above all else,
the designer must make sure that the thruster system has enough
control authority to overcome all possible disturbance forces. This
is guaranteed if the worst case output or minimum control authority
is greater than the worst case or largest disturbance force acting on
the spacecraft. Various techniques to calculate the minimum control
authority of a thruster system are derived in this article. A tool
called the minimum control authority plot is also developed, which
helps the designer graphically evaluate the various design options.
It gives the minimum magnitude moment-generating capability for
a specified magnitude of force.

A. Minimum Control Authority Plot

As a simple example of a minimum control authority plot consider
the thruster system depicted in Fig. 1. Four thrusters produce forces
in the F, = F, plane and two additional thrusters (not shown)
generate a pure moment (torque) Fys, which is plotted along the
vertical axis. If the propellant for the six thrusters is supplied by a
single reservoir with a limited flow rate, then the pyramid in Fig. 1
depicts the maximum force and moment that can be generated by the
system in any direction. We call this the “control authority” of the
system. It is the boundary of the controllable region or the locus of
points in the force output space where a limit on the thrusters is first
reached. The thrusters can generate higher forces in some directions
than in others. The corners at the base of the pyramid correspond to
the force that can be generated if all of the propellant is directed out
through just one of the force thrusters. The top of the pyramid is the
maximum moment achieved if all of the flow is directed out through
the two moment-generating thrusters. The heavy line on the face of
the pyramid represents the force-vs-moment generating capability
in the weakest direction. We call the plot of this line (Fig. 2) the
minimum control authority plot. For a given force magnitude ||F ¢ (|2,
this plot gives the minimum or worst case moment magnitude || Fy ||»
that can be generated by the thruster system.
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By plotting the maximum expected force and moment disturbance
the thruster system must overcome on the same plot, the thruster
system can be evaluated relative to what it has to do. If every point
of the minimum control authority plot is above the maximum force
and moment disturbances, as in Fig. 2, then the thruster system
is strong enough to overcome any disturbance even in its weakest
output direction.

B. Outline of Article

The minimum control authority plot is given a precise mathe-
matical definition in the next section. To illustrate the concept and
demonstrate its usefulness, the minimum control authority plot is
then applied to the design of the thruster system for the Gravity Probe
B (GP-B)!? spacecraft. Next we go into the details of calculating
the minimum control authority. First we discuss how to control the
thrusters to achieve a desired output force on the spacecraft while
simultaneously minimizing either flow rate, power, or peak thruster
force. This is followed by detailed descriptions on how to calculate
the minimum control authority for various combinations of thruster
controllers and thruster limits. Given these techniques, Sec. VI de-
scribes how to generate the minimum control authority plot.

The techniques developed in this aritcle to calculate the minumum
control authority plot are completely general and are not restricted
justto thruster systems. The techniques can be applied to any parallel
configuration of actuators, whether it is a system of reaction wheels,
control moment gyros, hydraulic actuators, pneumatic actuators, or
parallel robotic manipulators like a robot hand or Stewart platform.
All of the statements in this article with the term thruster therefore
are equally valid if thruster is replaced with the term actuator. For
example, the techniques could be applied to the next generation of
highly maneuverable airplanes that are projected to have as many
as 20 primary flight control actuators.*>

The concept of using the minimum control authority to evaluate
various thruster configurations for GP-B was originally proposed
by Chen.®

II. Problem Definition

The simple example of Fig. 1 has only six thrusters. For this
example the minimum control authority plot can easily be deter-
mined graphically. In general, however, a spacecraft will have many
thrusters generating both forces and moments with a total of six-
degrees-of-freedom control. The control authority in this case is
not a simple pyramid but is some unimaginable surface in six-
dimensional space. Because it is impossible to draw this surface,
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Fig.1 Control authority of six thrusters with a limit on flow rate.
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Fig.2 Minimum control authority plot for system of six thrusters. Flow
rate is limited to peak value of 1. Vertical and horizontal lines correspond
to worst case applied force and moment loads (disturbances) on system,
respectively.

a mathematical approach is needed to calculate the minimum con-
trol authority plot for the general six-degrees-of-freedom case. The
size and shape of the minimum control authority surface depends
on three things: 1) thruster configuration, the number of thrusters
and their physical placement on the spacecraft; 2) thruster control,
the way in which the individual thrusters are controlled to obtain a
desired output force; and 3) thruster limit, the physical mechanism
that limits the forces that can be generated by the thruster system.
An intermediate step in calculating the minimum control author-
ity plot is to first find the minimum control authority, which is the
point on the minimum control authority surface closest to the origin.
Finding the minimum control authority involves a quadratic mini-
mization subject to the constraints of a fixed configuration, control,
and thruster limit. The goal of the next six subsections is to give a
precise definition of the minimum control authority plot. We start
by defining thruster configuration and then thruster limit, thruster
control, control authority, minimum control authority, and finally
the minimum control authority plot.

A. Thruster Configuration

A typical spacecraft, such as the one for GP-B (Sec. III), may have
18 thrusters providing moments Fy, for attitude control around three
axes and forces Fr for translation control along three axes. The net
force and moment exerted on the spacecraft by the combined outputs
of the individual thrusters can be expressed as

F = AT 1)

where F is a 6 x 1 generalized force vector composed of the three
components of the force, F , and moment, Fy, vectors respectively.
If n is the number of thrusters, then T is an n x 1 vector of the mag-
nitudes of the force exerted by the individual thrusters and A is the
6 x n configuration matrix that defines the positions and orientations
of each thruster. For example, consider the thruster configuration de-
picted in Fig. 3, consisting of three thrusters radiating from a single
point (center of mass). Equation (1) for this case is

1 -05 -05
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Fig.3 Control authorities of system of three, two-sided thrusters using
either minimum power or minimum flow rate controller. Only positive
outputs, +T, +T3, and +T3, of two-sided thrusters are shown. Flow rate
is limited to 1 in both cases.

The number of thrusters n is typically greater than the number
of degrees of freedom. This means that the 6 x n configuration
matrix A is “fat” and the set of simuitaneous linear equations (1)
are underdetermined.

B. Thruster Limit

Any actuation system has some physical mechanism that limits
its maximum output force generating capability. A thruster or hy-
draulic system, for example, may be limited by available flow rate,
power, or pressure. An electrical system may have a limited cur-
rent, voltage, or power available to drive the motors. These various
physical limitations can be defined in terms of vector norms.” These
norms are the mathematical basis for the techniques derived later in
this article to calculate the minimum control authority of a system
of thrusters.

A vector norm measures the size of a vector. For example, the
2-norm || T||> is the length or magnitude of the vector T and corre-
sponds to the square root of the sum of the squares of the elements
of T:

©)]

If the elements of T are the force outputs of a set of thrusters, then the

2-norm measures the square root of the total power generated by the

system. A limit on the net power available to a system of thrusters

is characterized by an upper bound on the 2-norm, || 7|2 < ma.
The 1-norm ||T||; is the sum of the absolute values of T,

1Tl = 1T “
i=1

and therefore corresponds to the total flow rate. A system with a
finite flow rate or current is characterized by a limit on the 1-norm
of the thruster command vector, | Ts]|; < m;.

The co-norm is the component of T with the largest magnitude,

ITlloo % max|T;| 5)

and in our case corresponds to the maximum of the force outputs of
the individual thrusters. A system limited by the peak force achiev-
able by the individual thrusters can be characterized by a limit on
the oo-norm, || T;{le < Meo.

C. Thruster Control

A thruster system’s main task is to generate desired forces and
moments F on the spacecraft. Some type of algorithm is therefore
required to decide how to control the individual thrusters to obtain
the desired output forces and moments. Controlling the thrusters
involves solving Eq. (1), F = AT, for T given F and A. Typically
Eq. (1) is underdetermined, in which case it can be satisfied by an
infinite number of different vectors T. A unique solution can be
specified by requiring that T satisfies some additional constraints.
The most common constraint specifies that the sum of the squares
of the elements of T are a minimum. This least squares, min ||T'[},,
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constraint yields the simple linear thruster controller, T = A'F,
where A' is the pseudoinverse® of A. For reasons that will become
apparent shortly, we also study the thruster controllers that min-
imize either the peak individual thruster force, min ||T||, or the
sum of the absolute values of the outputs of the individual thrusters,
min [|T]},. These three types of controllers yield the desired output
force F while minimizing one of the following three physical quanti-
ties: 1) min || T||;, minimizes fuel flow rate; 2) min || T'||,, minimizes
power; and 3) min |[T'[|, minimizes peak individual thruster force.

D. Control Authority

For a given thruster configuration, thruster controller, and thruster
limit, we call the surface of maximum achievable output forces in
any direction the control authority. For example, this is the pyramid
in Fig. 1 or the polygons and circle in Fig. 4. To see how differ-
ent controller types can affect the control authority, consider the
three thrusters in a plane depicted in Fig. 3. The smaller hexagon is
the control authority if the minimum power controller, min || T'|[,, is
used and the larger hexagon corresponds to the control authority if
the minimum flow rate controller, min ||T'||;, is used. The amount of
flow rate available to drive the thrusters is limited to the same value
in both cases. This illustrates the importance of using the appropri-
ate controller to achieve the greatest possible forcing capability out
of the thruster system. The minimum flow rate controller, min || T}|,,
uses the available flow rate as efficiently as possible. For example,
to generate a force along the horizontal direction, it only turns on
the thruster that points in that direction, +77. The minimum power
controller is not as fuel efficient in this case since it turns the other
two thrusters, —7, and —T3, on equal amounts, wasting fuel in the
positive and negative vertical directions. Consequently, the mini-
mum power controller can only generate 75% of the force in the
horizontal direction compared to the minimum-flow-rate controller.

The same principle applies to systems limited by power or peak
individual thruster force. If a system has a limit on the power avail-
able to drive the thrusters, then the greatest possible output force can
be achieved with the controller that minimizes power, min || T'|j,, for
a given output force. Similarly the greatest output forces can be
achieved if the minimum peak individual thruster force controller,
min | T|, is used for systems limited by the peak force that can be
generated by the individual thrusters. The selection logic should be
appropriate to the actual physical constraint.

The control authorities for the simple planar, two-degrees-of-
freedom examples (Figs. 3 and 4) in this subsection can be de-
picted as simple polygons or circles. This is not true in general for a
thruster system with six-degrees-of-freedom control. Here the con-
trol authority is a surface in six-dimensional space and can only be
defined in mathematical terms. In general, the control authority F ,
is defined as the set of forces,

def

F,, = AT, 6)
such that
ITll, = m, )
where
T, < argmin |7l ®)

and s, p = 1,2, 00. The first subscript, s, in F , refers to the
type of controller used: min ||T||,, where s = 1, 2, oo. The second

peak thruster
flow rate limit  power limit force limit
Izl =1 hrl, =1 Il =1
F
-
F

Fig. 4 Control authority of two mutually perpendicular thrusters in
a plane for various thruster limits. Each thruster is two sided, being
capable of generating forces in both positive and negative directions.

subscript, p, refers to the type of thruster limit: ||T'||, = m,, where
p = 1,2, co. There are nine possible combinations of s and p. For a
given thruster configuration matrix the control authority F , is the
set of maximum achievable forces and moments in any direction for
a given thruster controller and thruster limit. The notation arg min
in Eq. (8) means that T; is the specific T that minimizes the s-norm
of T.

E. Minimum Control Authority

The minimum control authority is the shortest distance to the

control authority surface,

min [|F; |12, s,p=12,00 ®
It corresponds to the weakest output direction of the thruster sys-
tem. The minimum control authority can be thought of as a minimax
problem in the sense that it is the minimum over all possible out-
put directions of the maximum force that can be generated by the
thruster system in any of those directions given a specific thruster
controller. Specifying a thruster limit [Sec. IL.B] along with the
thruster controller [Sec. II.C] automatically specifies a maximum
force. The minimax problem therefore reduces to a quadratic min-
imization, min ||F; ,{l., subject to the constraints of 1) a specific
thruster controller, min ||T||;, s = 1, 2, 00, and 2) a specific thruster
limit, || T, = m,, p =1, 2, 00.

As a simple example, the minimum control authority of two
thrusters with a limit on flow rate, depicted in the leftmost plot of
Fig. 4, corresponds to the points on the square closest to the origin.
The distance to these points is the minimum control authority.

F. Minimum Contrel Authority Plot

The minimum control authority, min ||F , ||, is a single number
that measures the worst case force and moment-generating capabil-
ity of a thruster system. The number itself is difficult to interpret,
however, since it mixes units of force and moment together. It would
be far more useful if this single number could be split into two num-
bers corresponding to the worst case moment vs worst case force
outputs. This is the purpose of the minimum control authority plot,
which is a graphical representation of the trade-off between the
force- and moment-generating capabilities of the thruster system in
the worst case output directions. The minimum control authority
plotin Fig. 2, for example, reflects the fact that as more force output
is demanded of the thruster system, the amount of flow rate available
to generate moments decreases. In the limit, if a force output mag-
nitude of 1/+/2 is commanded, then no flow rate is available to gen-
erate moments. In general, given a specific thruster configuration,
thruster controller, and thruster limit, the minimum control authority
plot indicates the minimum moment magnitude that can be gener-
ated by a thruster system for a fixed force magnitude. This worst case
moment magnitude is plotted along the vertical axis, and the worst
case force magnitude is plotted along the horizontal axis. Calculating
the minimum control authority plot involves a quadratic minimiza-
tion, min ||Fy ||, given a quadratic constraint, min |[Fr|, = FFr,
and the following additional constdra}ints: 1) thruster configuration
F = AT,:2) thruster controller T, = argming [|T|l;, s=1,2,00;
and 3) thruster limit |Ts|l, = m,, p = 1,2, co. Of course, the de-
cision to plot moment vs force in the minimum control authority
plot is a bit arbitrary. The minimum control authority plot could be
applied to any pair of decoupled axes of generalized force.

II1. Applications to Gravity Probe B

The minimum control authority plot was used to design a thruster
system for the GP-B spacecraft, which will carry an experiment
to test several aspects of general relativity theory. According to
Einstein’s theory, the spin-axis of a gyroscope placed in orbit
around Earth will experience a very small drift of its spin axis rela-
tive to inertial space.” GP-B will measure this relativistic drift with
four gyroscopes electrostatically suspended within a spacecraft. To
achieve the experimental goal of measuring these drifts to better than
1% accuracy, the nonrelativistic drift must be less than 0.1 milliarc-
sec per year.!? This phenomenally low drift rate is achieved by can-
celing external disturbances by means of a drag-free'!'1? translation
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Table 1 Thruster limits and controllers for GP-B

Thruster limit

Controllertype  ITslli = vewn  ITslloo =vei2 | Tslloo = vekwy
min [T Line 2 Line 1 Line 3
min || T}eo — — Line 4
8
4

Moment (millinewton-meter)

5
0 8
0 Force {millinewton)

Fig. 5 Minimum control authority plots for GP-B: line 1, differential
thrusters; lines 2-4, one-sided thrusters.

control system. Also, a very precise attitude control system main-
tains inertial pointing of the spacecraft to within 60 milliarcsec.!® A
set of thrusters provides the six-degrees-of-freedom force/moment
control authority for both the translation and attitude control sys-
tems. The propellant for the thrusters is obtained from the boil-off
gas of an on-board liquid helium cryogenic system.!® Since the av-
erage boil-off rate is only w, = 5 x 1075 kg/s, the thruster system
must be designed very carefully to maximize the minimum control
authority. The minumum control authority plot has been applied to
evaluate various designs for the GP-B thruster system.!?

Recall from Sec. I that there are three things that affect the min-
imum control authority: 1) thruster configuration, 2) thruster con-
troller, and 3) thruster limit. In this example for GP-B we fix the
thruster configuration and investigate how the other two factors af-
fect the minimum control authority. The thruster configuration con-
sists of 16 thrusters clustered in groups of 4 at the four vertices of a
regular tetrahedron. We investigate the minimum control authority
for two types of controllers: 1) minimum power, min ||T||;, and 2)
minimum thruster output, min || T|,. We investigate: three types of
thruster limits:

1) Peak individual thruster force limit || T || o = v.(w,/n), Where
n = 8, two-sided, differential thrusters'®; The differential thrusters
divide the total flow rate w, by n so that the peak flow rate per
thruster is w, /n. The parameter values v,, w,, and n are defined in
Table 1. This limit corresponds to line 1 in the minimum control
authority plot of Fig. 5.

2) Flow rate limit |||}, = v.w,, where a software limit is im-
posed on the 16 thrusters so that the total flow rate does not exceed
w), kilograms per second: This type of limit is necessary to maintain
uniform cooling for the liquid helium cryogenic system.!? This limit
corresponds to line 2 in Fig. 5.

3) Peak individual thruster force limit {| T || .o = v.kw,, where the
peak flow rate per thruster is kw, kilograms per second: The value
k is a function of the thruster throat area and the total flow rate and
w, is determined by the supply pressure.!* This limit corresponds
to lines 3 and 4 in Fig. 5.

Table 1 summarizes the four combinations of thruster limits and
controllers we analyze for the given thruster configuration. The min-
imum control authority plots corresponding to these four cases are
displayed in Fig. 5. These plots are based on the parameter values
listed in Table 2.

Summary of the minimum control authority plots for GP-B:
Figure 5 illustrates how the minimum control authority plot lets
the thruster system designer graphically evaluate various design
options. For GP-B, for example, we see immediately that one-sided
thrusters (lines 2-4) have greater authority than differential thrusters
(line 1). Comparing lines 4 and 3, we also see the increased au-

Table 2 Parameter values for GP-P

Parameter Value
Exhaust gas velocity v, = 1274 m/s
Total flow rate w, =5 x 1076 kgfs
Flow rate ratio k=033
Thruster moment arm r=1m
Number of differential thrusters n=2_8

thority realized with the minimum peak individual thruster force
controller (line 4) vs the minimum power controller (line 3) for the
same thruster limit, || 7|, = v.kw,. The increased authority must
be traded off against the increased computational burden for this
type of controller (Sec. IV.B). Lines 5 and 6 in Fig. 5 are the worst
case moment and force disturbances expected to act on the GP-B
spacecraft.

The rest of this article goes into the details of controlling the
thrusters, calculating the minimum control authority, and generating
the minimum control authority plot.

IV. Thruster Control

As outlined in Sec. II.C, controlling the thrusters to obtain a de-
sired force output F given a configuration matrix A involves solving
the set of simultaneous linear equations F = AT, for the thruster
command vector 7. In this article we find the three solutions T that
satisfy F = AT, and in addition minimize the s = 1, 2, co norms
of T. In mathematical terms we find the following three solutions,
T;: given F and A,

T, £ argmin |7, (10)

suchthat F = AT,,wheres = 1, 2, oo, T > 0. The notation arg min
in Eq. (10) means that 7 is that specific 7' that minimizes the s-
norm of T subject to the constraints F = AT, and T > 0. The
inequality constraint is necessary for one-sided thrusters capable
of generating forces in only one direction. The techniques used to
calculate these three solutions, s = 1, 2, 0o, are defined in the next
three subsections. For s = 2 the solution (thruster controller) is
easy: It involves calculating the pseudoinverse of A. The solutions
are more difficult if s = 1 or s = oo since they involve solving
linear programs.

A. Minimum Power Controller

The solution to F = AT that minimizes power, T, = min ||T},,
is the simplest to implement since the thruster command vector T,
is simply a linear function of the desired force F:

T, = A'F an

The matrix A' is the pseudoinverse of A and is equal to AT (AAT)~1.
The pseudoinverse can also be conveniently found using the func-
tion pinv in MATLAB,'* which uses a numerically stable algorithm
based on the singular value decomposition.” For a given thruster con-
figuration A, the pseudoinverse A has to be computed only once.
Given A, computing the thruster command vector T involves only
the simple matrix multiplication in Eq. (11).

This simple controller (11) will not work directly for one-sided
thrusters, T, > 0. For example, if T, > 0 for a desired force F,
then, from (11), T, < 0 for —F. By biasing the thruster commands
about the middle of their output range, however, the psendoinverse
may be applied without yielding any negative thruster commands.

B. Minimum Flow Rate Controller

The minimum flow rate controller yields the greatest possible
output force for a system that has a limit on the total flow rate
supplied to the thrusters. The solution T that minimizes the flow
rate can be found by solving the following linear program®:

T, =arg mTin rr 12)

subject to

AT > F, T=>0 (13)
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where I is a vector of ones and 0 is a vector of zeros of the same
length as 7. In words, Eq. (12) says “minimize the 1-norm of 77
and Eq. (13) says “subject to the constraints that T generates at least
the desired force, AT > F, using only one-sided thrusters, T > 0.”
Linear programs like (12) and (13) can easily be solved using
the Simplex method.® Many computer programs that implement the
Simplex method are available. The Simplex method converges very
quickly and therefore can be used for real-time control for many
applications. We used the Simplex method, for example, to solve
for T'; in the GP-B thruster system. For a thruster system consisting
of 18 individual thrusters we were able to solve for 1000 completely
random generalized force commands in 80 s. This corresponds to
an update rate of 12.5 Hz. The calculations were done on a Sun-
3 computer rated at 12 million instructions per second (mips). The
program LSSOL'> was used, which implements the Simplex method
in Fortran. Although 12.5 Hz is fast enough for the GP-B translation
and attitude control systems, it is not nearly as fast as the simple
matrix multiplication of the minimum power controller (11). This
controller runs about 100 times faster on the same computer.

C. Minimum Peak Individual Thruster Force Controller

A system that is limited by the peak forces attainable by the indi-
vidual thrusters produces the largest possible force if the minimum
peak individual thruster force controller, min || 7|0, is used. This
controller is the solution to the following linear program:

T
T, = argmin {07 u[z] 14)

R e
[:] >0 (16)

where I is the identity matrix, I is a vector of ones, 0 is a vector of
zeros, and z is a scalar. Another way of stating Egs. (14-16) is

subject to

min z an
subject to
=z 18)
AT >F (19)
2, T=0 20)

where z is a vector of z the same length as T. This linear program
finds the solution to F = AT with the smallest oc-norm on T.

V. Calculating the Minimum Control Authority

In this section we present in detail the techniques used to calcu-
late the minimum control authority of a system of thrusters. Since
the minimum power solution is the easiest to compute, it is com-
monly used even if the thruster system is not limited by available
power, although this does not yield the greatest control authority.
Systems that are limited by thruster output or flow rate, for ex-
ample, often use the minimum power controller. For the minimum
power controller, therefore, we show how to compute the minimum
control authority for all three cases: 1) flow rate limited, 2) power
limited, and 00) peak individual thruster force limited. The other
two controller types, minimum flow rate, min || 7}|,, and minimum
peak individual thruster force, min ||T'}|«. are so computationally
intensive compared to the minimum power controller that they are
only used if the increased minimum control authority is essential.
For example, the minimum flow rate controller would only be used
if the system output was limited by flow rate. Similarly, the mini-
mum thruster force controller would only be used if the output of
the system was limited by the peak-force-generating capability of

the individual thrusters. The specific combinations of controllers
and thruster limits that we analyze in this section are summarized
in Table 3.

A. Minimum Power Controller

Not only is the minimum power controller the easiest to compute,
it also makes it easy to compute the minimum control authority.
Recall from Eqs. (6) and (7) that the control authority is the set of
forces F, , = AT satisfying some p-norm on T, [T, = m,,.
From Eq. (11) we know that the minimum power solution T, can
be written as a function of F, T, = A'F. Therefore the minimum
control authority is

. def .
min [|F2,pll2 = min [Fll, 21D

such that

VATF|l, = m,, =1,2,00 (22

Equations (21) and (22) show that if the minimum power con-
troller is used, then the minimum control authority depends only
on the input/output properties of the pseudoinverse matrix At. The
input to AT is F and the output is A'F. Equations (21) and (22)
state that the minimum control authority corresponds to the force
with the smallest 2-norm that results in an output with a p-norm of
|ATF||, = m,. In other words, if the size of the input is measured
by the 2-norm || F||, and the size of the output is measured by the p-
norm || ATF|| ,, then the minimum control authority corresponds to
the force that makes the ratio of || ATF|| p» to [IF ||, as big as possible.
‘We call this ratio A; B

¢ arNATFI,
2» =5 IFl

(23)

The scalar A; p 18 @ matrix norm and corresponds to the peak gain
of the matrix AT when the size of the input is measured by the 2-
norm and the size of the output is measured by the p-norm.” If a
thruster system is operating at its thruster limit, then the numerator
in Eq. (23) is fixed, |ATF| » = my. The peak gain A; p oceurs if
the denominator in Eq. (23) is a minimum, which for our case is
the minimum control authority ||F|l; = min ||F;,,{|,. Substituting
in for the numerator and denominator in Eq. (23) yields

i mp

Al =—r
P min [[Fapl2

so the minimum control authority is

mp
5 p=1200 24
2.p

min ||F3 ||, =

In order to calculate the minimum control authority when the
minimum power controller is used, therefore, we must first find the
matrix norm A; o As we show in the following three subsections,
finding A; , for the three cases when p = 1, 2, 0o is easy.

Minimum Power Controller, Power Limited, min |[F, 2|2

In this subsection we show how to calculate the minimum control
authority of a system of thrusters if the minimum power controller
T, is used and if the thruster system has a limit on the total power
available, ||T|l; = m,. From Eq. (24) we know that we must first
find A;Z. It is a well-known fact that the peak gain of the matrix

Table 3 Five combinations of limits and controllers

Thruster limit
Flow rate, Power, Peak force,
Controller type min || T} min ||T||> min | Tf o
min 7T min [\Fy 1|2
min 7, min [|Fz 1l min |[|[F22]2 min [[F2,00ll2
min 7o, - — min ||Feo,00ll2
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flow rate limited,
(72, =1

power limited,

peak thruster force
limited, " T2||w =1

Fig. 6 Control authorities of system of three, two-sided thrusters sub-
ject to limitation on flow rate, power, or peak individual thruster force.
Only pesitive outputs, +Ty, +72, and +7T3, of two-sided thrusters are
shown. Minimum power controller used in all three cases.

AT when the sizes of both the input and output are measured by the
2-norm is the maximum singular value o;(A") of At.® Therefore,
the matrix norm is A; p =01 (A"). From Eq. (24) the minimum
control authority is

. ms
F = — 25
min ||[F ]2 o1 (AD (25)

The maximum singular value o{(AY) can be found from the
singular-value decomposition [U, S, V] = svd(A"), where U, §,
and V are matrices such that AT = USV7. The maximum singu-
lar value is the first element in S. The direction of the minimum
control authority corresponds to the first column in V, V;, which
has unit magnitude; therefore, arg min {|F 2 [l = £ min ||[F, 2|2 V;.
The singular-value decomposition can be calculated using various
numerical computation software packages like MATLAB.!

Example. As a simple example consider three thrusters 120°
apart in a plane, as depicted in Fig. 6. The thruster configuration
matrix A and the pseudoinverse matrix A’ are, respectively,

0.67 0

A=[(1) _008'3 _0053]’ AT =1]-033 058
: : -0.33 —0.58

(26)

If the power available to the thruster system is limited to || T [l < 1,
then the control authority is depicted by the circle in Fig. 6. The
maximum singular value of A" is 0,(A") = \/g ; the minimum
control authority from Eq. (25) is min ||Fo 2|, = \/g . Since all of
the singular values of A" are equal to %, the minimum control
authority is the same in all directions, as illustrated by the circle in
Fig. 6.

Minimum Power Controller, Peak Individual Thruster Force
Limited, min ||F2, o |2

Here we show how to compute the minimum control authority of
a thruster system whose output force is limited by the peak force
that can be generated by the individual thrusters. Even though the
minimum power controller does not result in the greatest possible
minimum control authority for this type of thruster limit (see, e.g.,
Fig. 7), it is still used very frequently since it requires the least
amount of computations. From Eq. (24), the minimum control au-
thority for this case is

Moo

T

2,00

min [|Fzel2 =

@n

The matrix norm A;m is one of the easiest to compute. It is equal
to the maximum 2-norm of the rows of A'. Ifa] are the rows of AT,
T

a4

At =1 (28)

Nyt

and if aZ is the row with the largest 2-norm, a2, %! arg max; la? ll2,
then A;oo = [l@n||2- See Ref. 13 for a proof of this fact. From Eq.
(27), therefore, the minimum control authority is

Mo

min |F3 c0ll2 =
ll@m 112

(29)

The minimum control authority is in the same direction as the row
with the largest 2-norm:

. . am
argmin ||F |2 = £ min ”F2,oo"2m (30)
mll2

Example. Consider three thrusters in a plane again (Fig. 6). If
the individual thrusters have a limit on their peak force normalized
to a value of 1, |7, < 1, and if the minimum power controller
is used, then the control authority is the large hexagon in Fig. 6.
The pseudoinverse A is again given by Eq. (26). The minimum
control authority depends on the row with the largest 2-norm in
A, which in this case is [, = % From Egq. (29) the minimum
control authority is min ||[F; |l2 = % From Eq. (30) the directions
corresponding to the minimum control authority are

+H1.5  0.0]7
argmin [Fyoolls = { #[-0.74  1.3]7
+[-0.74 —1.3]7

These are the points on the larger hexagon in Fig. 6 that are closest
to the origin.

Minimum Power Contreller, Flow Rate Limited, min [|[F7 (|2

If the flow rate to the thruster system is limited but the minimum
power controller is used, then calculating the minimum control au-
thority involves finding A;, from Eq. (24). The technique for finding
A;l is similar to the technique described above for finding A;m,
with the additional complication that we must first define the ma-
trix Q.

Definition 1. If nisthe number of thrusters, let Q(n) be the 2" xn
matrix formed by counting in binary to 2" with the O replaced by
+1 and the 1 replaced by —1. For example, if n = 2, then,

0 0 00 1 1 1
1 — 10 0 1 . 1 1 —1 ] der
2wy o 1 0f o1 {1 -1 1[=€ ©GD
3 01 1|71 -1 =1

The absolute value of a negative number isits negative, |T;| = —T;

if T; < 0,butitis the numberitselfifitis positive, |T;] = T;if T; > 0.
The matrix Q therefore accounts for all of the ways that the outputs
from the thrusters can be added and subtracted to yield the sum of
the absolute values, || T||;.

minimum power

thruster
controller, F 2,00

{3 places)

minimum peak thruster
force controller, F,,

Fig. 7 Control authorities of system of three two-sided thrusters us-
ing either minimum power or minimum peak individual thruster force
controller. Maximum force of individual thrusters limited to 1 N in both
cases. Only positive output, +77, and negative outputs, —7 and — T3,
of two-sided thrusters are shown.
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The matrix norm A;l is equal to the maximum 2-norm of the
rows of Q(n — 1)AT. More rigorously, if nr = 2"~! and g7 A" are
the rows of QAT,

g{ A
QA" = (32)
g, A’
and if gL A" is the row with the largest 2-norm, ¢7 A" =

argmax; ||q” A'|l2, then A;l = ||g% A" ||;. From Eq. (24) the mini-
mum control authority for this case is

mi
lgm At

and the direction of the minimum control authority is the same as
the vector, g7 A',

min [|[F3, > = 33

7, A"
gL ATl

For a proof of Eqs. (33) and (34), see Ref. 13.

Example. Consider the same configuration of three thrusters
as in the last two examples (Fig. 6). This time the system output is
limited by a maximum flow rate of 1 being available to the thrusters,
[{T2jl; = 1. To calculate the minimum control authority, we must
first define the matrix Q,

arg min ||[Fy 1|l = £ min ||[Fa ]2 (34)

1 1 1
1 1 -1
=11 1 1
1 -1 -1
The matrix QAT is therefore
0 0
0.67 1.15
t_
04" = 10671 -1.15
1.33 0

The last three rows of Q A* have a 2-norm of ||lg] AT||, = %. There-
fore, from Eq. (33) the minimum control authority is min ||[F, |, =
%, and the directions corresponding to the minimum control author-
ity from Eq. (34) are

+[0.38  0.65]7
argmin |Fy (> = { £[0.38 —0.65]"
£075 0 17

The control authority for this case is the smaller hexagon in Fig. 6.
The minimum control authority corresponds to the points on the
hexagon that are closest to the origin.

B. Minimum Flow Rate Controller, Flow Rate Limited, min [|[F;, |2

Calculating the minimum flow rate controller requires solving a
linear program. To find the minimum control authority of a system
using this type of controller, a nonlinear program must be solved. In
this section we show how to calculate the minimum control authority
of a system that has a limit on flow rate and uses the minimum flow
rate controller. In other words, we find min ||F ;||,, which is the
shortest distance to the control authority surface, F ;. The control
authority F, ; is the set of output forces attainable by the system
if the minimum flow rate controller T} is used and if the system is
operating at its maximum flow rate limit,

1Ty =TTy =m (33)
From the previous subsection we know that T satisfies the linear
program defined in Eqs. (12) and (13). The dual® to this linear pro-

gram is

maxy’ F (36)

such that
ATy <I and y>0 (37

The duality theorem of linear programming states that for an optimal
solution the minimum of the primal problem (12) and the maximum
of the dual problem (36) have the same value,® y'F = I T,. From
Eq. (35) this becomes

y'F=m (38)

The beauty of the duality theorem is that it allows us to replace
the requirement that T solves a linear program with the simple
scalar constraint of Eq. (38). Combining Eqs. (38), (13), (37), and
(35) results in the following formulation for the minimum control
authority:

min |\Fy 2 = mFin [(Fll2 (39)
such that
Y'F=m AT >F ATy <1
I'T=m T,y>0

The unfortunate aspect of this minimization problem is that the
constraint y' F = m; involves the product of two variables, so it is
nonlinear. Finding the minimum control authority therefore requires
minimizing a quadratic objective function (39) subject to a nonlinear
constraint. Nonlinear programs of this type are readily solved using
the program MINOS. !¢

Example. Consider three thrusters 120 deg apart in a plane, as
in Fig. 3. The two hexagons in the figure correspond to the control
authority of the system if the total flow rate is limited to 1, || T ][, < 1.
The larger hexagon is the control authority if the minimum flow rate
controller is used, s = 1, and the smaller hexagon corresponds to
the minimum power controller, s = 2. The minimum flow rate
controller is more efficient. For example, if a unit force along the
positive x axis is desired, the minimum flow rate controller turns
on just the thruster pointing in that direction, Ty = [1 0 0]7. The
minimum power controller also turns on the other two thrusters,
T, = {0.67 —0.33 —0.33]7, using more fuel. Figure 3 graphicaily
illustrates the increased force that can be achieved by using the
appropriate controller for the given thruster limit.

C. Minimum Peak Individual Thruster Force Controller, Peak
Individual Thruster Force Limited, min ||[Foo oo l2

This case is analogous to the minimum flow rate controller, where
again the minimum control authority is the solution to a nonlinear
program. The minimum control authority of a thruster system lim-
ited by the peak forces attainable by the individual thrusters and that
uses the minimum peak individual thruster force controller is

min {|Foo oo |2 = min |[Fl2 (40)

such that
IToolloo = Moo (41
where T, is the minimum peak individual thruster force controller,

T, = min ||T||, and therefore satisfies the linear program in Egs.
(14-16). The dual to this linear program is

|0
o[ ?]
-1 AT 0

y>0 43)

Subject to
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From the duality theorem of linear programming (Sec. V.B),

T T — ! 0
[0 11[1]4 [F] “4)

Combining Egs. (40), (44), (15), (42), (41), (16), and (43), the min-
imum control authority is

min [|Fos o0 fl2 = min || Fl 45)

subject to

T,y,z220

The constraint in Eq. (44) is nonlinear, which means that finding
the minimum control authority, min [|Fy, o ||2, Fequires minimizing
a quadratic objective function, Eq. (45), with a nonlinear constraint.
Again this type of problem is readily solved using the program
MINOS. !¢

Example. Once again consider three thrusters in a plane (Fig. 7).
This time the two hexagons correspond to the control authority of the
thruster system if the individual thrusters are limited by their output
force, ||T|lco < 1. The larger hexagon shows the increased control
authority obtained by minimizing thruster output (min ||7'|| con-
troller). The smaller hexagon corresponds to the minimum power
controller. The minimum control authority vector for the minimum
power controller is argmin ||[Fy )2 = [1.5 0]7. The thruster
forces that yield argmin ||F; |l and minimize power are T, =
A'(arg min ||Fy, ||2). Therefore, from Eq. (26), [T7 T, T} =
[ —05 —0.5]7. The three thruster outputs 7> are shown in
Fig. 7. Notice that T, satisfies the constraint || T, ||, < 1. The vector
To=1[1 —1 —1]7 also satisfies J|Toolloc < 1 but yields the
higher output Fo, oo = ATs = [2  0]7. The minimum peak indi-
vidual thruster force controller T, = min ||T||, does the smarter
thing in this case: It turns each thruster on full blast. It uses more
power than T, but yields a higher output. The minimum control
authority for the minimum peak individual thruster force controller
is min [|F o 00ll2 = 1.73 and can be found by minimizing Eq. (45)
in MINOS.

VL. Generating the Minimum Control Authority Plot

As the force generated by a thruster system increases, its ability to
generate moments decreases. The minimum control authority plot is
a graphical representation of this interdependence. For a given force
magnitude, the minimum control authority plot gives the minimum
of the maximum moment. This concept could also be applied to any
two independent components of the generalized force vector.

The loads or disturbances a thruster system must overcome are
often conveniently expressed in terms of forces and moments. By
plotting the force and moment load lines on the same plot as the
minimum control authority plot, we can tell whether the system
is strong enough to overcome the load. If the minimum control
authority plot is above the load lines, then we know that the thruster
system can handle the loads under worst case conditions (Fig. 2).

Finding the minimum control authority plot involves normalizing
the thruster configuration matrix A before applying the techniques
described in Sec. V to calculate the minimum control authority.
For example, consider the thruster configuration depicted in Fig. 8,
consisting of two thrusters each located a distance r from the center

Fig. 8 Planar configuration of two thrusters.

of mass. The thruster configuration matrix for this case is

-0.5 0.5
087 -—-0.87
def | Fr [t} O 0 Ty | et
F = = =
[FM] 0 Tz] AT (46)
0 0
r r

where Fr and Fy are 3 x 1 vectors corresponding to force and
moment outputs, respectively. Equation (46) can be normalized by
dividing the last three rows of both sides by 7,

-0.5 05
. 0.87 —-0.87
adef | FF | et 0 0 Ty | ger
F=) ., = = AT 47
[F M] 0 0 [TZ] “n
0 0
r/fr r/F

The scalar 7 can be any number, for example, the greatest moment
arm physically obtainable. The vector F is now a normalized gener-
alized force vector. All of the components of F have units of force.
The matrix A is a normalized version of A.

Lam'7 has proposed a different normalization for A. By dividing
each row of A by the worst case disturbance force component asso-
ciated with that row, the minimum control authority is automatically
adjusted to the disturbance force and moment distribution. The min-
imum control authority now gives the safety margin relative to the
worst case disturbance force.

Calculating the points along the minimum control authority plot
involves computing the minimum control authority of the normal-
ized configuration matrix (47) as the normalizing coefficient 7 is
varied between zero and infinity. Values of 7 less than 1 increase the
normalized moment arms r/7 in Eq. (47). The result is to skew the
minimum control authority corresponding to the normalized con-
figuration matrix A in the direction of pure force outputs which
are smaller compared to the moment outputs. For example, in the
limit 7 — 0 (r/F — 00), the force output corresponding to A is
so small compared to the moment output that the minimum control
authority is entirely in the direction of force output only. This is the
intersection of the minimum control authority plot with the x axis.
Similarly, values of 7 > 1 skew the minimum control authority plot
away from force and toward pure moment outputs. All of the points
of the minimum control authority plot from the intersection with the
x axis to the intersection with the y axis can be generated as  goes
from zero to infinity.

The technique for computing the minimum control authority plot
involves the following steps:

1. Normalize the configuration matrix A by 7.

2. Compute the minimum control authority vector arg min ||F , >
using any of the techniques in Sec. V depending on the type of
thruster limit and thruster controller.

3. Compute the force magnitude ||Fr ||, and the normalized mo-
ment magnitude || Fy ||, fromarg min ||F; , ||2. Note, arg min ||F;, , ||
=IFL LT

4. Find the true moment magnitude (|F, |, = FI{iJ‘M ll2.

5. Plot the point ||Fy |2 vs || FFll>-

6. Repeat the procedure for various 7 between zero and infinity
to fill in the minimum control authority plot.
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~ T

Moment Magnitude

0 . 0.6
Force Magnitude

Fig. 9 Discontinuity in minimum control authority plot.

If this procedure is followed, the minimum control authority plot
will generally have a break in the middle, as depicted by the dotted
line in Fig. 9. The discontinuity occurs at r/F = 1. It is due to the
factthatif » /7 < 1, then the minimum control authority is mostly in
the moment direction, but for r/7 > 1 it favors the force direction.
Since the two points at the discontinuity, points a and b in Fig. 9, both
correspond to r /7 = 1, they consequently have the same minimum
control authority, min ||F; ,{l,. The discontinuity can therefore be
completed, or “filled in,” with the section of a circle corresponding
to a constant minimum control authority:

IFyll2 = /(min [1F; ,112)> — I1F I3 4%)

Equation (48) is the dotted line in Fig. 9. It smoothly connects
the discontinuity between the points a and b. Minimum control
authority plots for the GP-B thruster system are shown in Fig. 5.

VII. Conclusion

The minimum control authority plot can tell you if a thruster
system has sufficient authority to counter disturbances. If the min-
imum control authority plot is above the greatest possible distur-
bance forces/moments acting on the system, then the thrusters are
strong enough to overcome these disturbances under worst case
conditions. The minimum control authority plot is a design tool.
It lets the designer of an actuation system know what his/her
options are and gives him/her a tool to evaluate competing de-
signs. One of the main features of the minimum control author-
ity plot is that it allows you to evaluate the redundancy of a
thruster system. If the minimum control authority of a system of
thrusters under a worst case thruster failure is greater than the worst
case disturbance load, then the system is redundant. Although we
have focused our attention on thruster systems in this article, the
techniques are applicable in general to any system of actuators of
any type.
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